Inspired by the some very short
lisp code (
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&c2coff=1&selm=ceef5p%24cch%241%40newsreader2.netcologne.de
) which itself is based on some Java code, I gave a 10 minute try to implement the mandelbrot set in the shortest amount of Tcl (one cheat: use
tcllib):
package require math::complexnumbers
proc norm {c} { return [expr {pow([math::complexnumbers::real $c],2) + pow([math::complexnumbers::imag $c],2)}] }
proc abs {c} { return [expr {sqrt([norm $c])}] }
proc mandel {} {
for {set y -1} {$y < 1.1} {set y [expr {$y + 0.1}]} {
for {set x -2} {$x < 1.0} {set x [expr {$x + 0.04}]} {
set c 126
set z [math::complexnumbers::complex $x $y]
set a $z
while {([abs [set z [math::complexnumbers::+ [math::complexnumbers::* $z $z] $a]]] < 2) && ([incr c -1] > 32)} {}
puts -nonewline [format %c $c]
}
puts ""
}
}
mandel
This can be
greatly improved on, so please do so! --
Todd CoramSee
Mandelbrot for background on this fractal.
Here is a translation of the original
Java code (which inspired the
lisp version) to Tcl. No
tcllib dependencies:
proc mandel {} {
for {set e 1.1} {$e > -1.2} {set e [expr {$e - .1}]} {
for {set b -2.0} {$b < 1.0} {set b [expr {$b + 0.04}];
puts -nonewline [expr {($b > 1) ? "\n":[format %c $h]}]} {
for {set r 0; set n 0; set h 127} \
{[expr {$r*$r+$n*$n}] < 4 && [incr h -1] > 32} \
{set d $r; set r [expr {$r*$r-$n*$n+$b}];
set n [expr {2*$d*$n+$e}]} {}
}
}
}
mandel
A whole lot of ugliness there ;-)
Todd Coram~~~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}||||||||{{{zyvrwuW{|||||}}}}}}~~~~~~~~~~~~
~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}|||||||||{{{zyxwoaqwxz{{{|||||}}}}}}~~~~~~~~~
~~~~~~~~}}}}}}}}}}}}}}}}}}}|||||||||{{zzzyxvn Knwyz{{{{||||}}}}}}~~~~~~~
~~~~~~}}}}}}}}}}}}}}}}}}||||||||{{zyxuxxxwvuq svwwyzzzyr{||}}}}}}}~~~~~
~~~~}}}}}}}}}}}}}}}}}|||||{{{{{zzzxt> qf pttfqeqz{|}}}}}}}}~~~
~~~}}}}}}}}}}}}}}|||{{{{{{{{{zzzywotn atyz{||}}}}}}}}~~
~~}}}}}}}}}||||{{zwvyyyyyyyyyyyxvsP swvz{||}}}}}}}}~
~}}}}|||||||{{{{zyxvpN[ur]spvwwvi qxz{|||}}}}}}}}
~}||||||||{{{{{zyytun qq avz{|||}}}}}}}}
~||||||{zzzzyyxtroqb a xz{{|||}}}}}}}}
~@G::# 6# ( pvxyz{{||||}}}}}}}
~||||||{zzzzyyxtroqb a xz{{|||}}}}}}}}
~}||||||||{{{{{zyytun qq avz{|||}}}}}}}}
~}}}}|||||||{{{{zyxvpN[ur]spvwwvi qxz{|||}}}}}}}}
~~}}}}}}}}}||||{{zwvyyyyyyyyyyyxvsP swvz{||}}}}}}}}~
~~~}}}}}}}}}}}}}}|||{{{{{{{{{zzzywotn atyz{||}}}}}}}}~~
~~~~}}}}}}}}}}}}}}}}}|||||{{{{{zzzxt> qf pttfqeqz{|}}}}}}}}~~~
~~~~~~}}}}}}}}}}}}}}}}}}||||||||{{zyxuxxxwvuq svwwyzzzyr{||}}}}}}}~~~~~
~~~~~~~~}}}}}}}}}}}}}}}}}}}|||||||||{{zzzyxvn Knwyz{{{{||||}}}}}}~~~~~~~
~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}|||||||||{{{zyxwoaqwxz{{{|||||}}}}}}~~~~~~~~~
~~~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}||||||||{{{zyvrwuW{|||||}}}}}}~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}}|||||{zmt{{{||||}}}}}~~~~~~~~~~~~~~~~
Discussion edit
KPV Here's a fun web page [
1] that provides a step-by-step explanation of how a simple C mandlebrot program can be made smaller and more obfuscated.