# symbolic.tcl -- # # Experiment with symbolic (algebraic) manipulation: # determine the derivative of an expression # # Note: # Parsing an expression like {$x/(1+$x)} is not implemented yet. # So you will have to do that yourself: # {/ $x {+ 1 $x}} # Derivative w.r.t. x: # {1/(1+$x)-$x/((1+$x)*(1+$x)) - not the simplest form, but # [expr] won't mind # # toexpr -- # Reconstruct the expression from the parsed and manipulated # form # Arguments: # parse_tree The parsed and manipulated expression # Result: # String representing the expression as [expr] would take it # Note: # The result is safe, as far as brackets are concerned, but # very conservative # proc toexpr { parse_tree } { if { [llength $parse_tree] == 1 } { return $parse_tree } else { foreach {op operand1 operand2} $parse_tree {break} switch -- $op { "umin" {return "-[toexpr2 - $operand1]"} "-" {return "[toexpr2 - $operand1]-[toexpr2 - $operand2]"} "+" {set add1 [toexpr2 + $operand1] set add2 [toexpr2 + $operand2] if { $add1 == "0" || $add1 == "(0)" } { return $add2 } if { $add2 == "0" || $add2 == "(0)" } { return $add1 } return "$add1+$add2" } "*" {set mult1 [toexpr2 * $operand1] set mult2 [toexpr2 * $operand2] if { $mult1 == "1" || $mult1 == "(1)" } { return $mult2 } if { $mult2 == "1" || $mult2 == "(1)" } { return $mult1 } if { $mult1 == "0" || $mult2 == "0" || $mult1 == "(0)" || $mult2 == "(0)" } { return 0 } return "$mult1*$mult2" } "/" {return "[toexpr2 / $operand1]/[toexpr2 / $operand2]"} "npow" {return "pow([toexpr $operand1],[toexpr $operand2])"} "atan2" {return "atan2([toexpr $operand1],[toexpr $operand2])"} "hypot" {return "hypot([toexpr $operand1],[toexpr $operand2])"} default {return "$op\([toexpr $operand1])"} } } } # toexpr2 -- # Reconstruct the expression from the parsed and manipulated # form, add brackets if necessary given the context # Arguments: # context Operator context # parse_tree The parsed and manipulated expression # Result: # String representing the expression as [expr] would take it # proc toexpr2 { context parse_tree } { if { [llength $parse_tree] == 1 } { return $parse_tree } else { set op [lindex $parse_tree 0] if { $op == $context || [llength $parse_tree] == 2 } { return [toexpr $parse_tree] } else { return "([toexpr $parse_tree])" } } } # deriv -- # Construct the derivative w.r.t. a given variable # # Arguments: # var Name of the variable # parse_tree The parsed and manipulated expression # Result: # Parsed expression representing the derivative # proc deriv { var parse_tree } { # # Two cases: # - The parse tree consists of the expression "$var" only # - The parse tree is more complicated, then delegate the # task to the subexpressions and assemble # if { [llength $parse_tree] == 1 } { if { "$parse_tree" == "\$$var" } { return 1 } else { return 0 } } else { foreach {op operand1 operand2} $parse_tree {break} switch -- $op { "umin" {return [list umin [deriv $var $operand1]]} "-" {return [list - [deriv $var $operand1] [deriv $var $operand2]]} "+" {return [list + [deriv $var $operand1] [deriv $var $operand2]]} "*" {return [list + \ [list * [deriv $var $operand1] $operand2 ] \ [list * $operand1 [deriv $var $operand2] ] ]} "/" {return [list / \ [list - \ [list * [deriv $var $operand1] $operand2 ] \ [list * $operand1 [deriv $var $operand2] ] ] \ [list * $operand2 $operand2] ]} "npow" {return [list * \ [list * $operand2 [deriv $var $operand1]] \ [list npow $operand1 [expr {$operand2-1}]] ]} "sin" {return [list * \ [deriv $var $operand1] [list cos $operand1] ]} "cos" {return [list umin \ [list * \ [deriv $var $operand1] [list sin $operand1]] ]} "exp" {return [list * \ [deriv $var $operand1] [list exp $operand1] ]} default {error "Derivative for '$op' not implemented"} } } } # # Simple test # set x {$x} puts "Original expression: {$x/(1+$x)}" puts "Reconstructed: [toexpr {/ $x {+ 1 $x}}]" puts "Derivative: [toexpr [deriv x {/ $x {+ 1 $x}}]]" puts "Original expression: {sin($x)*exp($x)}" puts "Reconstructed: [toexpr {* {sin $x} {exp $x}}]" puts "Derivative: [toexpr [deriv x {* {sin $x} {exp $x}}]]"
If you run this, the result is:
Original expression: {$x/(1+$x)} Reconstructed: $x/(1+$x) Derivative: (((1+$x))-($x))/((1+$x)*(1+$x)) Original expression: {sin($x)*exp($x)} Reconstructed: sin($x)*exp($x) Derivative: (cos($x)*exp($x))+(sin($x)*exp($x))Not bad, eh? For one hour's work.There, I have said it thrice, and what I say thrice, is true!(Note: I just had get Lewis Carroll in there somewhere :D)