D. McC XBM is a simple format by which monochrome bitmaps are represented in ASCII text. It consists of
- a short header specifying image height and width, and
- a series (enclosed in braces) of "big-endian" hexadecimal codes, separated by semicolons and spaces, representing "little-endian" binary data.
# Procedure to extract X Bitmap Data (XBD) from .xbm file:
proc xbmtoxbd {xbm} { global xbd_data set xbd_data "" # Open XBM file: set fileid [open $xbm "r"] set newxbm [read $fileid] close $fileid # Get image width and height from XBM header: set onbrace [string first "\{" $newxbm] set onrang [string range $newxbm 0 $onbrace] set onlines [split $onrang "\n"] set goxbox 0 foreach line $onlines { set deflin [split $line {" "_}] if { [lindex $deflin 0] == "#define" } { set widorhi [lindex $deflin "end-1"] if { $widorhi == "width" } { set bimwid [lindex $deflin end] set eighthwid [expr $bimwid / 8.0] set eighto [split $eighthwid "."] if { [lindex $eighto end] == 0 } { set xbd_half [lindex $eighto 0] } else { set xbd_half [expr [lindex $eighto 0] + 1] } set xbd_width [expr $xbd_half*2] } elseif { $widorhi == "height" } { set img_ht [lindex $deflin end] } } if { [string equal $xbd_width ""] < 1 && [string equal \ $img_ht ""] < 1 } { break } } # Strip away inessentials from bitmap data: set firstox [string first "0x" $newxbm] set xbmtext [string range $newxbm $firstox end] set xbmtext [string map { "0x" "" "," "" " " "" "\}" "" ";" "" "\n" "" } $xbmtext] for { set x 0 } { $x <= $img_ht } { incr x } { set linestar [expr $xbd_width * $x] set linend [expr $linestar + $xbd_width -1] set xbdlin [string range $xbmtext $linestar $linend] append xbd_data "$xbdlin\n" } }# Do this on specified file:
xbmtoxbd ocrtest.xbmStep two is to turn the big-endian hex codes into strings of 1's and 0's representing binary data in little-endian order.# Procedure to convert XBD to X Bitmap Text (XBT):
proc xbdtoxbt {xbd} { global xbt_text set xbt_text [string map { 00 00000000 01 10000000 02 01000000 03 11000000 \ 04 00100000 05 10100000 06 01100000 07 11100000 \ 08 00010000 09 10010000 0a 01010000 0b 11010000 \ 0c 00110000 0d 10110000 0e 01110000 0f 11110000 \ 10 00001000 11 10001000 12 01001000 13 11001000 \ 14 00101000 15 10101000 16 01101000 17 11101000 \ 18 00011000 19 10011000 1a 01011000 1b 11011000 \ 1c 00111000 1d 10111000 1e 01111000 1f 11111000 \ 20 00000100 21 10000100 22 01000100 23 11000100 \ 24 00100100 25 10100100 26 01100100 27 11100100 \ 28 00010100 29 10010100 2a 01010100 2b 11010100 \ 2c 00111100 2d 10110100 2e 01110100 2f 11110100 \ 30 00001100 31 10001100 32 01001100 33 11001100 \ 34 00101100 35 10101100 36 01101100 37 11101100 \ 38 00011100 39 10011100 3a 01011100 3b 11011100 \ 3c 00111100 3d 10111100 3e 01111100 3f 11111100 \ 40 00000010 41 10000010 42 01000010 43 11000010 \ 44 00100010 45 10100010 46 01100010 47 11100010 \ 48 00010010 49 10010010 4a 01010010 4b 11010010 \ 4c 00110010 4d 10110010 4e 01110010 4f 11110010 \ 50 00001010 51 10001010 52 01001010 53 11001010 \ 54 00101010 55 10101010 56 01101010 57 11101010 \ 58 00011010 59 10011010 5a 01011010 5b 11011010 \ 5c 00111010 5d 10111010 5e 01111010 5f 11111010 \ 60 00000110 61 10000110 62 01000110 63 11000110 \ 64 00100110 65 10100110 66 01100110 67 11100110 \ 68 00010110 69 10010110 6a 01010110 6b 11010110 \ 6c 00110110 6d 10110110 6e 01110110 6f 11111110 \ 70 00001110 71 10001110 72 01001110 73 11001110 \ 74 00101110 75 10101110 76 01101110 77 11101110 \ 78 00011110 79 10011110 7a 01011110 7b 11011110 \ 7c 00111110 7d 10111110 7e 01111110 7f 11111110 \ 80 00000001 81 10000001 82 01000001 83 11000001 \ 84 00100001 85 10100001 86 01100001 87 11100001 \ 88 00010001 89 10010001 8a 01010001 8b 11010001 \ 8c 00110001 8d 10110001 8e 01110001 8f 11110001 \ 90 00001001 91 10001001 92 01001001 93 11001001 \ 94 00101001 95 10101001 96 01101001 97 11101001 \ 98 00011001 99 10011001 9a 01011001 9b 11011001 \ 9c 00111001 9d 10111001 9e 01111001 9f 11111001 \ a0 00000101 a1 10000101 a2 01000101 a3 11000101 \ a4 00100101 a5 10100101 a6 01100101 a7 11100101 \ a8 00010101 a9 10010101 aa 01010101 ab 11010101 \ ac 00110101 ad 10110101 ae 01110101 af 11110101 \ b0 00001101 b1 10001101 b2 01001101 b3 11001101 \ b4 00101101 b5 10101101 b6 01101101 b7 11101101 \ b8 00011101 b9 10011101 ba 01011101 bb 11011101 \ bc 00111101 bd 10111101 be 01111101 bf 11111101 \ c0 00000011 c1 10000011 c2 01000011 c3 11000011 \ c4 00100011 c5 10100011 c6 01100011 c7 11100011 \ c8 00010011 c9 10010011 ca 01010011 cb 11010011 \ cc 00110011 cd 10110011 ce 01110011 cf 11110011 \ d0 00001011 d1 10001011 d2 01001011 d3 11001011 \ d4 00101011 d5 10101011 d6 01101011 d7 11101011 \ d8 00011011 d9 10011011 da 01011011 db 11011011 \ dc 00111011 dd 10111011 de 01111011 df 11111011 \ e0 00000111 e1 10000111 e2 01000111 e3 11000111 \ e4 00100111 e5 10100111 e6 01100111 e7 11100111 \ e8 00010111 e9 10010111 ea 01010111 eb 11010111 \ ec 00110111 ed 10110111 ee 01110111 ef 11110111 \ f0 00001111 f1 10001111 f2 01001111 f3 11001111 \ f4 00101111 f5 10101111 f6 01101111 f7 11101111 \ f8 00011111 f9 10011111 fa 01011111 fb 11011111 \ fc 00111111 fd 10111111 fe 01111111 ff 11111111 \ } $xbd] }# Do this on the XBD data obtained in step one:
xbdtoxbt $xbd_data# Insert 1's and 0's into empty text widget called ".texto" (with no word or character wrap, # and with horizontal and vertical scrollbars!) and see the result:
.texto insert 1.0 $xbt_text