mpr 2016-01-28: Karatsuba multiplication is an algorithm invented by Anatoly Karatsuba in 1960 to multiply n-digit numbers in less than O(n^2) time. The algorithm was invented for use on integers, but can be applied to polynomials represented as coefficient arrays. Here is an implementation based on this paper
http://www.ijcse.com/docs/INDJCSE12-03-01-082.pdf
.
proc odd { n } { expr { $n % 2 } }
proc zeros { n } { lrepeat $n 0 }
proc swap { x y } {
uplevel [subst { set tmp $$x; set $x $$y; set $y \$tmp }]
}
# Implements Karatsuba fast multiplication on polynomials represented
# by coefficient lists.
proc karatsuba { A B } {
# make A the longest list (highest degree polynomial).
if { [llength $B] > [llength $A] } { swap A B }
# put max length in n,
# min length in m.
set n [llength $A]
set m [llength $B]
set D [zeros [expr { ($n+$m)/2 }]]
set S [zeros [expr { $n+$m-1 }]]
set T [zeros [expr { $n+$m-1 }]]
set C [zeros [expr { $n+$m-1 }]]
# Compute products of same-indexed coefficients.
for {set i 0} {$i < $m} {incr i} {
lset D $i [expr { [lindex $A $i] * [lindex $B $i] }]
}
for {set i 1} {$i < $n+$m-2} {incr i} {
for {set p 0} {$p < min($m,$i)} {incr p} {
set q [expr { $i - $p }]
if { $p >= $q } { break }
set ap [lindex $A $p]
set aq [lindex $A $q]
set bp [lindex $B $p]
set dp [lindex $D $p]
if { $q < $m && $p < $m } {
set bq [lindex $B $q]
set dq [lindex $D $q]
lset S $i [expr { [lindex $S $i] + (($ap + $aq) * ($bp + $bq)) }]
lset T $i [expr { [lindex $T $i] + $dp + $dq }]
} elseif { $q >= $m && $q < $n } {
lset S $i [expr { [lindex $S $i] + (($ap + $aq) * $bp) }]
lset T $i [expr { [lindex $T $i] + $dp }]
}
}
}
# Set coeffients of resulting polynomial.
for {set i 0} {$i < $n+$m-1} {incr i} {
if { $i == 0 } {
lset C $i [lindex $D $i]
} elseif { $i == $n+$m-2 } {
lset C $i [expr { [lindex $A end] * [lindex $B end] }]
} elseif { [odd $i] } {
lset C $i [expr { [lindex $S $i] - [lindex $T $i] }]
} else {
lset C $i [expr { [lindex $S $i] - [lindex $T $i] + [lindex $D [expr { $i/2 }]] }]
}
}
set C
}
proc polly { coeffs var } {
for {set i 1} {$i < [llength $coeffs]} {incr i} {
lset coeffs $i "[lindex $coeffs $i]$var^$i"
}
lreverse [join $coeffs " + "]
}
# 8x^3 + 7x^2 + 8x + 32
set A {32 8 7 8}
# 4x^3 + 8x^2 + 12
set B {12 0 8 4}
puts [polly [karatsuba $A $B] x]
# outputs:
# 32x^6 + 92x^5 + 88x^4 + 288x^3 + 340x^2 + 96x^1 + 384