# Auxiliary procedures: # # Check the range of a parameter # proc check {descr var range} { foreach {min max} $range break if { $var < $min || $var > $max } { return -code error "Range error: $descr should be between $min and $max" } } # Efficiently evaluate a polynomial - # coefs is a list with the highest power first proc poleval {coefs x} { set y 0 foreach c $coefs { set y [expr {$y * $x + $c}] } }
A formula for the humidity content of air:
check "dew-point temperature" $td {-20 100} set vapordens [expr {5.018+0.32321*$td+8.1847e-3*$td*$td+3.1243e-4*$td*$td*$td}]Symbols:
- td the dewpoint temperature in degrees C - between -20 and +100 degrees
- vapordens the water vapour density in g water/m3
TR - Here comes a formula for the density of seawater as a function of salinity, temperature, and pressure:
proc rho {Salinity Temperature Pressure} { # # compute the density of seawater in kg/m3 as a function of: # # Salinity -> salinity (in psu, practical salinity units) # Temperature -> temperature (in ℃, degrees Celsius) # Pressure -> pressure (in bar) # check Temperature $Temperature {-2 40} check Salinity $Salinity {0 40} check Pressure $Pressure {0 12000} set rhow [expr { 999.842594 + 0.06793952 * $Temperature - 0.00909529 * pow($Temperature,2) + 0.0001001685 * pow($Temperature,3) - 1.120083e-06 * pow($Temperature,4) + 6.536332e-09 * pow($Temperature,5) }] set A [expr { 0.824493 - 0.0040899 * $Temperature + 7.6438e-05 * pow($Temperature,2) - 8.2467e-07 * pow($Temperature,3) + 5.3875e-09 * pow($Temperature,4) }] set B [expr { -0.00572466 + 0.00010227 * $Temperature - 1.6546e-06 * pow($Temperature,2) }] set C 0.00048314 set rho0 [expr { $rhow + $A * $Salinity + $B * pow($Salinity, 3.0/2) + $C * pow($Salinity, 2) }] set Ksbmw [expr { 19652.21 + 148.4206 * $Temperature - 2.327105 * pow($Temperature,2) + 0.01360477 * pow($Temperature,3) - 5.155288e-05 * pow($Temperature,4) }] set Ksbm0 [expr { $Ksbmw + $Salinity * ( 54.6746 - 0.603459 * $Temperature + 0.0109987 * pow($Temperature,2) - 6.167e-05 * pow($Temperature,3)) + pow($Salinity,3.0/2) * ( 0.07944 + 0.016483 * $Temperature - 0.00053009 * pow($Temperature,2)) }] set Ksbm [expr { $Ksbm0 + $Pressure * ( 3.239908 + 0.00143713 * $Temperature + 0.000116092 * pow($Temperature,2) - 5.77905e-07 * pow($Temperature,3)) + $Pressure * $Salinity * ( 0.0022838 - 1.0981e-05 * $Temperature - 1.6078e-06 * pow($Temperature,2)) + $Pressure * pow($Salinity,3.0/2) * 0.000191075 + $Pressure * $Pressure * ( 8.50935e-05 - 6.12293e-06 * $Temperature + 5.2787e-08 * pow($Temperature,2)) + pow($Pressure,2) * $Salinity * ( -9.9348e-07 + 2.0816e-08 * $Temperature + 9.1697e-10 * pow($Temperature,2)) }] return [expr {$rho0/double(1 - double($Pressure)/$Ksbm)}] }or using poleval
proc rho {Salinity Temperature Pressure} { set rhow [poleval {+6.536332e-09 -1.120083e-06 +0.0001001685 -0.00909529 +0.06793952 999.842594} $Temperature] set A [poleval {+5.3875e-09 -8.2467e-07 +7.6438e-05 -0.0040899 0.824493} $Temperature] set B [poleval {-1.6546e-06 +0.00010227 -0.00572466} $Temperature] set C 0.00048314 set rho0 [expr {$rhow + $A * $Salinity + $B * pow($Salinity,3.0/2) + $C * pow($Salinity,2)}] set Ksbmw [poleval {-5.155288e-05 +0.01360477 -2.327105 +148.4206 +19652.21} $Temperature] set Ksbm0 [expr { $Ksbmw + $Salinity * ( 54.6746 - 0.603459 * $Temperature + 0.0109987 * pow($Temperature,2) - 6.167e-05 * pow($Temperature,3)) + pow($Salinity,3.0/2) * ( 0.07944 + 0.016483 * $Temperature - 0.00053009 * pow($Temperature,2)) }] set Ksbm [expr { $Ksbm0 + $Pressure * ( 3.239908 + 0.00143713 * $Temperature + 0.000116092 * pow($Temperature,2) - 5.77905e-07 * pow($Temperature,3)) + $Pressure * $Salinity * ( 0.0022838 - 1.0981e-05 * $Temperature - 1.6078e-06 * pow($Temperature,2)) + $Pressure * pow($Salinity,3.0/2) * 0.000191075 + $Pressure * $Pressure * ( 8.50935e-05 - 6.12293e-06 * $Temperature + 5.2787e-08 * pow($Temperature,2)) + pow($Pressure,2) * $Salinity * ( -9.9348e-07 + 2.0816e-08 * $Temperature + 9.1697e-10 * pow($Temperature,2)) }] return [expr {$rho0/double(1 - double($Pressure)/$Ksbm)}] }References:
- Millero, F. J. and Poisson, A. 1981 International one-atmosphere equation of state of seawater. Deep-Sea Research 28A, 625-629.
- http://cran.r-project.org/src/contrib/Descriptions/seacarb.html
IDG May 04 2006: All empirical formulae need to have their range of validity stated. Note what happens to the above as td -> infinity :-)AM Ah! Good thinking! I have added the valid range.TR - Perhaps we should also add something like accuracy. It is often not good to give a result like 3.24345643 when the formula only has significance for 3.24. And: we should stick to SI units, so one result can be fed into the next formula without conversion.Sarnold - Add something like accuracy? Take a look at math::bigfloat if you need to manage accuracy across computations. I must admit it may obfuscate the source code for such a package. (When I designed it, I remembered my physicist background...)
As a small contribution to this project, I was thinking that it could be useful to have a "formula" proc that created a proc that applied the formula, converting units if necessary. Here's my whack at a "formula" proc:
package require units # Author: Eric Kemp-Benedict, 2007 # Use it as you like! # Usage: # formula nameOfFormula "Description" formula units V1 U1 V2 U2 ... proc formula {name args} { set fargs $args set procbody1 " set name $name set descr {[lindex $fargs 0]} set formula {[lindex $fargs 1]} set funits {[lindex $fargs 2]} foreach {v u} [list [lrange $fargs 3 end]] { set units(\$v) \$u }" set procbody2 { if {$args eq "info"} { set infostr "$descr\n\nVariables:\n" foreach v [lsort [array names units]] { set infostr "$infostr $v ($units($v))\n" } return $infostr } foreach {v = val} $args { if {[lsearch [array names units] $v] == -1} { error "$name: Variable $v is not valid; Use \"$name info\" for more information" return 0.0 } set $v [::units::convert $val $units($v)] } return "[expr $formula] $funits" } set procbody "$procbody1\n$procbody2" proc $name args $procbody } ## ## Example ## formula CharlesVol "Apply Charles' Law to calculate volume" \ {1.0 * $V1 * $T2/$T1} L \ V1 L T1 K T2 KOnce the example is created, you can do:
Apply Charles' Law to calculate volume Variables: T1 (K) T2 (K) V1 (L)to get a summary of the formula, and something like
(Formula) 98 % CharlesVol V1 = 3.2m^3 T1 = 300K T2 = 298K 3178.66666667 Lto apply it.AM (5 july 2007) Now, that looks very nice, especially the "info" subcommand! EKB Thanks!