proc func {x y z ...} { ... return function-value }While working on these procedures I realised that many numerical methods will have a set of parameters that influence the outcome, but in many cases these parameters will be set "globally", that is, you probably want to set them once and then use the methods without further ado. That would mean, that a separate procedure could set them globally and the actual computation just uses the currently available values.Or would it be better to use a variable set of options?Like:
setParams -maxsteps 100 set point [minimumSteepestDescent ...]or:
set point [minimumSteepestDescent ... -maxsteps 100](Right now I use the easier but less flexible method of default arguments)KBK (2004-06-14) notes that the core of almost any multidimensional optimisation system is a good method for Constrained minimisation in one dimension. The cited page has one method, which might be a good candidate for tcllib.
# differentiate.tcl -- # Numerical differentiation # namespace eval ::math::calculus { } namespace eval ::math::optimize { } # deriv -- # Return the derivative of a function at a given point # Arguments: # func Name of a procedure implementing the function # point Coordinates of the point # scale (Optional) the scale of the coordinates # Result: # List representing the gradient vector at the given point # Note: # The scale is necessary to create a proper step in the # coordinates. The derivative is estimated using central # differences. # The function may have an arbitrary number of arguments, # for each the derivative is determined - this results # in a list of derivatives rather than a single value. # (No provision is made for the function to be a # vector function! So, second derivatives are not # possible) # proc ::math::calculus::deriv {func point {scale {}} } { set epsilon 1.0e-12 set eps2 [expr {sqrt($epsilon)}] # # Determine a scale # foreach c $point { if { $scale == {} } { set scale [expr {abs($c)}] } else { if { $scale < abs($c) } { set scale [expr {abs($c)}] } } } if { $scale == 0.0 } { set scale 1.0 } # # Check the number of coordinates # if { [llength $point] == 1 } { set v1 [$func [expr {$point+$eps2*$scale}]] set v2 [$func [expr {$point-$eps2*$scale}]] return [expr {($v1-$v2)/(2.0*$eps2*$scale)}] } else { set result {} set idx 0 foreach c $point { set c1 [expr {$c+$eps2*$scale}] set c2 [expr {$c-$eps2*$scale}] set v1 [eval $func [lreplace $point $idx $idx $c1]] set v2 [eval $func [lreplace $point $idx $idx $c2]] lappend result [expr {($v1-$v2)/(2.0*$eps2*$scale)}] incr idx } return $result } } # auxiliary functions -- # proc ::math::optimize::unitVector {vector} { set length 0.0 foreach c $vector { set length [expr {$length+$c*$c}] } scaleVector $vector [expr {1.0/sqrt($length)}] } proc ::math::optimize::scaleVector {vector scale} { set result {} foreach c $vector { lappend result [expr {$c*$scale}] } return $result } proc ::math::optimize::addVector {vector1 vector2} { set result {} foreach c1 $vector1 c2 $vector2 { lappend result [expr {$c1+$c2}] } return $result } # minimumSteepestDescent -- # Find the minimum of a function via steepest descent # (unconstrained!) # Arguments: # func Name of a procedure implementing the function # point Coordinates of the starting point # eps (Optional) measure for the accuracy # maxsteps (Optional) maximum number of steps # Result: # Coordinates of a point near the minimum # proc ::math::optimize::minimumSteepestDescent {func point {eps 1.0e-5} {maxsteps 100} } { set factor 1.0 set nosteps 0 if { [llength $point] == 1 } { while { $nosteps < $maxsteps } { set fvalue [$func $point] set gradient [::math::calculus::deriv $func $point] if { $gradient < 0.0 } { set gradient -1.0 } else { set gradient 1.0 } set found 0 set substeps 0 while { $found == 0 && $substeps < 3 } { set newpoint [expr {$point-$factor*$gradient}] set newfval [$func $newpoint] #puts "factor: $factor - point: $point" # # Check that the new point has a lower value for the # function. Can we increase the factor? # # if { $newfval < $fvalue } { set point $newpoint # # This failed with sin(x), x0 = 1.0 # set newpoint2 [expr {$newpoint-$factor*$gradient}] # set newfval2 [$func $newpoint2] # if { $newfval2 < $newfval } { # set factor [expr {2.0*$factor}] # set point $newpoint2 # } set found 1 } else { set factor [expr {$factor/2.0}] } incr substeps } # # Have we reached convergence? # if { abs($factor*$gradient) < $eps } { break } incr nosteps } } else { while { $nosteps < $maxsteps } { set fvalue [eval $func $point] set gradient [::math::calculus::deriv $func $point] set gradient [unitVector $gradient] set found 0 set substeps 0 while { $found == 0 && $nosteps < $maxsteps } { set newpoint [addVector $point [scaleVector $gradient -$factor]] set newfval [eval $func $newpoint] #puts "factor: $factor - point: $point" # # Check that the new point has a lower value for the # function. Can we increase the factor? # # if { $newfval < $fvalue } { set point $newpoint set found 1 } else { set factor [expr {$factor/2.0}] } incr nosteps } # # Have we reached convergence? # if { abs($factor) < $eps } { break } incr nosteps } } return $point } # test -- # proc f {x} { expr {$x*$x-$x} } proc e {x} { expr {exp($x)} } proc e2 {x y} { expr {$x*$x+$y*$y} } proc e3 {x y} { expr {($x-1.0)*$x+$y*($y+1.0)} } foreach x {0 1 2 3 4 5} { puts "$x: [::math::calculus::deriv f $x] ([f $x] -- [expr {2*$x-1}])" } foreach x {0 1 2 3 4 5} { puts "$x: [::math::calculus::deriv e $x] ([e $x] -- [expr {exp($x)}])" } foreach {x y} {0 1 1 0 1 1} { puts "$x: [::math::calculus::deriv e2 [list $x $y]] ([e2 $x $y]))" } proc ff {x} { expr {sin($x)} } proc fff {x} { expr {0.00001*$x*$x} } puts "Minimum f: [::math::optimize::minimumSteepestDescent f 10.0]" puts "Minimum ff: [::math::optimize::minimumSteepestDescent ff 1.0]" puts "Minimum fff: [::math::optimize::minimumSteepestDescent fff 1.0]" puts "Minimum e2: [::math::optimize::minimumSteepestDescent e2 {1.0 1.0}]" puts "Minimum e3: [::math::optimize::minimumSteepestDescent e3 {1.0 1.0}]"
SS notes that this algorithm is used in the simplest form of back propagation artificial neural networks.AM Really? I know little of neural networks beyond the mere principles. I know the steepest-descent method only from numerical analysis, but it is interesting that such methods find their way into totally different areas of application.jt Oddly enough I have been writing a FFBP Neural Networks that uses steepest descent.
[ Category Numerical Analysis ]