Arjen Markus (29 april 2004) Here is a script that implements a number of straightforward interpolation methods. There is no documentation as yet beyond the comments in the code, but I want to submit this to Tcllib.
The biggest problem is: how to represent the data? This has less to do with the performance, IMO, than with the ease with which someone can use these procs. Perhaps several representations ought to be possible.
# interpolate.tcl --
#
# Package for interpolation methods (one- and two-dimensional)
#
# Remarks:
# None of the methods deal gracefully with missing values
#
# To do:
# Add cubic splines and B-splines as methods
# For spatial interpolation in two dimensions also quadrant method?
# Method for destroying a table
# Proper documentation
# Proper test cases
#
# version 0.1: initial implementation, january 2003
# version 0.2: added linear and Lagrange interpolation, straightforward
# spatial interpolation, april 2004
package provide interpolation 0.2
package require struct
# ::math::interpolation --
# Namespace holding the procedures and variables
#
namespace eval ::math::interpolation {
variable search_radius {}
variable inv_dist_pow 2
namespace export interp-1d-table interp-table interp-linear \
interp-lagrange
}
# defineTable --
# Define a two-dimensional table of data
#
# Arguments:
# name Name of the table to be created
# cols Names of the columns (for convenience and for counting)
# values List of values to fill the table with (must be sorted
# w.r.t. first column or first column and first row)
#
# Results:
# Name of the new command
#
# Side effects:
# Creates a new command, which is used in subsequent calls
#
proc ::math::interpolation::defineTable { name cols values } {
set table ::math::interpolation::__$name
::struct::matrix $table
$table add columns [llength $cols]
$table add row
$table set row 0 $cols
set row 1
set first 0
set nocols [llength $cols]
set novals [llength $values]
while { $first < $novals } {
set last [expr {$first+$nocols-1}]
$table add row
$table set row $row [lrange $values $first $last]
incr first $nocols
incr row
}
return $table
}
# inter-1d-table --
# Interpolate in a one-dimensional table
# (first column is independent variable, all others dependent)
#
# Arguments:
# table Name of the table
# xval Value of the independent variable
#
# Results:
# List of interpolated values, including the x-variable
#
proc ::math::interpolation::interp-1d-table { table xval } {
#
# Search for the records that enclose the x-value
#
set xvalues [lrange [$table get column 0] 1 end]
foreach {row row2} [FindEnclosingEntries $xval $xvalues] break
set prev_values [$table get row $row]
set next_values [$table get row $row2]
set xprev [lindex $prev_values 0]
set xnext [lindex $next_values 0]
if { $row == $row2 } {
return [concat $xval [lrange $prev_values 1 end]]
} else {
set wprev [expr {($xnext-$xval)/($xnext-$xprev)}]
set wnext [expr {1.0-$wprev}]
set results {}
foreach vprev $prev_values vnext $next_values {
set vint [expr {$vprev*$wprev+$vnext*$wnext}]
lappend results $vint
}
return $results
}
}
# interp-table --
# Interpolate in a two-dimensional table
# (first column and first row are independent variables)
#
# Arguments:
# table Name of the table
# xval Value of the independent row-variable
# yval Value of the independent column-variable
#
# Results:
# Interpolated value
#
# Note:
# Use bilinear interpolation
#
proc ::math::interpolation::interp-table { table xval yval } {
#
# Search for the records that enclose the x-value
#
set xvalues [lrange [$table get column 0] 2 end]
foreach {row row2} [FindEnclosingEntries $xval $xvalues] break
incr row
incr row2
#
# Search for the columns that enclose the y-value
#
set yvalues [lrange [$table get row 1] 1 end]
foreach {col col2} [FindEnclosingEntries $yval $yvalues] break
set yvalues [concat "." $yvalues] ;# Prepend a dummy column!
set prev_values [$table get row $row]
set next_values [$table get row $row2]
set x1 [lindex $prev_values 0]
set x2 [lindex $next_values 0]
set y1 [lindex $yvalues $col]
set y2 [lindex $yvalues $col2]
set v11 [lindex $prev_values $col]
set v12 [lindex $prev_values $col2]
set v21 [lindex $next_values $col]
set v22 [lindex $next_values $col2]
#
# value = v0 + a*(x-x1) + b*(y-y1) + c*(x-x1)*(y-y1)
# if x == x1 and y == y1: value = v11
# if x == x1 and y == y2: value = v12
# if x == x2 and y == y1: value = v21
# if x == x2 and y == y2: value = v22
#
set a 0.0
if { $x1 != $x2 } {
set a [expr {($v21-$v11)/($x2-$x1)}]
}
set b 0.0
if { $y1 != $y2 } {
set b [expr {($v12-$v11)/($y2-$y1)}]
}
set c 0.0
if { $x1 != $x2 && $y1 != $y2 } {
set c [expr {($v11+$v22-$v12-$v21)/($x2-$x1)/($y2-$y1)}]
}
set result \
[expr {$v11+$a*($xval-$x1)+$b*($yval-$y1)+$c*($xval-$x1)*($yval-$y1)}]
return $result
}
# FindEnclosingEntries --
# Search within a sorted list
#
# Arguments:
# val Value to be searched
# values List of values to be examined
#
# Results:
# Returns a list of the previous and next indices
#
proc FindEnclosingEntries { val values } {
set found 0
set row2 1
foreach v $values {
if { $val <= $v } {
set row [expr {$row2-1}]
set found 1
break
}
incr row2
}
#
# Border cases: extrapolation needed
#
if { ! $found } {
incr row2 -1
set row $row2
}
if { $row == 0 } {
set row $row2
}
return [list $row $row2]
}
# interp-linear --
# Use linear interpolation
#
# Arguments:
# xyvalues List of x/y values to be interpolated
# xval x-value for which a value is sought
#
# Results:
# Estimated value at $xval
#
# Note:
# The list xyvalues must be sorted w.r.t. the x-value
#
proc ::math::interpolation::interp-linear { xyvalues xval } {
#
# Border cases first
#
if { [lindex $xyvalues 0] > $xval } {
return [lindex $xyvalues 1]
}
if { [lindex $xyvalues end-1] < $xval } {
return [lindex $xyvalues end]
}
#
# The ordinary case
#
set idxx -2
set idxy -1
foreach { x y } $xyvalues {
if { $xval < $x } {
break
}
incr idxx 2
incr idxy 2
}
set x2 [lindex $xyvalues $idxx]
set y2 [lindex $xyvalues $idxy]
if { $x2 != $x } {
set yval [expr {$y+($y2-$y)*($xval-$x)/($x2-$x)}]
} else {
set yval $y
}
return $yval
}
# interp-lagrange --
# Use the Lagrange interpolation method
#
# Arguments:
# xyvalues List of x/y values to be interpolated
# xval x-value for which a value is sought
#
# Results:
# Estimated value at $xval
#
# Note:
# The list xyvalues must be sorted w.r.t. the x-value
# Furthermore the Lagrange method is not a very practical
# method, as potentially the errors are unbounded
#
proc ::math::interpolation::interp-lagrange { xyvalues xval } {
#
# Border case: xval equals one of the "nodes"
#
foreach { x y } $xyvalues {
if { $x == $xval } {
return $y
}
}
#
# Ordinary case
#
set nonodes2 [llength $xyvalues]
set yval 0.0
for { set i 0 } { $i < $nonodes2 } { incr i 2 } {
set idxn 0
set xn [lindex $xyvalues $i]
set yn [lindex $xyvalues [expr {$i+1}]]
foreach { x y } $xyvalues {
if { $idxn != $i } {
set yn [expr {$yn*($x-$xval)/($x-$xn)}]
}
incr idxn 2
}
set yval [expr {$yval+$yn}]
}
return $yval
}
# interp-spatial --
# Use a straightforward interpolation method with weights as
# function of the inverse distance to interpolate in 2D and N-D
# space
#
# Arguments:
# xyvalues List of coordinates and values at these coordinates
# coord List of coordinates for which a value is sought
#
# Results:
# Estimated value(s) at $coord
#
# Note:
# The list xyvalues is a list of lists:
# { {x1 y1 z1 {v11 v12 v13 v14}
# {x2 y2 z2 {v21 v22 v23 v24}
# ...
# }
# The last element of each inner list is either a single number
# or a list in itself. In the latter case the return value is
# a list with the same number of elements.
#
# The method is influenced by the search radius and the
# power of the inverse distance
#
proc ::math::interpolation::interp-spatial { xyvalues coord } {
variable search_radius
variable inv_dist_pow
set result {}
foreach v [lindex [lindex $xyvalues 0] end] {
lappend result 0.0
}
set total_weight 0.0
if { $search_radius != {} } {
set max_radius2 [expr {$search_radius*$search_radius}]
} else {
set max_radius2 {}
}
foreach point $xyvalues {
set dist 0.0
foreach c [lrange $point 0 end-1] cc $coord {
set dist [expr {$dist+($c-$cc)*($c-$cc)}]
}
if { $max_radius2 == {} || $dist <= $max_radius2 } {
if { $inv_dist_pow == 1 } {
set dist [expr {sqrt($dist)}]
}
set total_weight [expr {$total_weight+1.0/$dist}]
set idx 0
foreach v [lindex $point end] r $result {
lset result $idx [expr {$r+$v/$dist}]
incr idx
}
}
}
puts "Total weight: $total_weight"
if { $total_weight == 0.0 } {
set idx 0
foreach r $result {
lset result $idx {}
incr idx
}
} else {
set idx 0
foreach r $result {
lset result $idx [expr {$r/$total_weight}]
incr idx
}
}
return $result
}
# interp-spatial-params --
# Set the parameters for spatial interpolation
#
# Arguments:
# max_search Search radius (if none: use {} or "")
# power Power for the inverse distance (1 or 2, defaults to 2)
#
# Results:
# None
#
proc ::math::interpolation::interp-spatial-params { max_search {power 2} } {
variable search_radius
variable inv_dist_pow
set search_radius $max_search
if { $power == 1 } {
set inv_dist_pow 1
} else {
set inv_dist_pow 2
}
}
#
# Simple test code
#
if { [file tail [info script]] == [file tail $::argv0] } {
set t [::math::interpolation::defineTable table1 \
{ x v1 v2 v3 } \
{ 0 0 10 1
1 1 9 4
2 2 8 9
5 5 5 25
7 7 3 49
10 10 0 100 }]
foreach x { -1.0 0.0 3.0 5.0 9.9 11.0 } {
puts [::math::interpolation::interp-1d-table $t $x]
}
# value = x+y
set t2 [::math::interpolation::defineTable table2 \
{ x y1 y2 y3 } \
{ - 0 3 10
1 1 4 11
2 2 5 12
5 5 8 15
7 7 10 17
10 10 13 20 }]
puts " "
foreach y { -1.0 0.0 3.0 5.0 9.9 11.0 } {
foreach x { -1.0 0.0 3.0 5.0 9.9 11.0 } {
puts "$x $y [::math::interpolation::interp-table $t2 $x $y]"
}
}
# linear interpolation: y = x + 1 and y = 2*x, x<5, or 20-2*x, x>5
puts "\nLinear interpolation (1) - expected: 1.0, 5.0, 8.0, 11.0, 11.0"
set xyvalues { 0.0 1.0 10.0 11.0 }
foreach x { 0.0 4.0 7.0 10.0 101.0 } {
puts "$x: [::math::interpolation::interp-linear $xyvalues $x]"
}
puts "\nLinear interpolation (2) - expected: 0.0 8.0 6.0 0.0 0.0"
set xyvalues { 0.0 0.0 5.0 10.0 10.0 0.0 }
foreach x { 0.0 4.0 7.0 10.0 11.0 } {
puts "$x: [::math::interpolation::interp-linear $xyvalues $x]"
}
# Lagrange interpolation: y = x + 1
puts "\nLagrange interpolation (1) - expected: 1.0, 5.0, 8.0, 11.0, 102.0"
set xyvalues { 0.0 1.0 10.0 11.0 }
foreach x { 0.0 4.0 7.0 10.0 101.0 } {
puts "$x: [::math::interpolation::interp-lagrange $xyvalues $x]"
}
puts "\nLagrange interpolation (2) - expected: y=10-2*(x-5)**2/5"
puts "so: 0.0, 10-2/5, 10-8/5, 0.0, 10-72/5"
set xyvalues { 0.0 0.0 5.0 10.0 10.0 0.0 }
foreach x { 0.0 4.0 7.0 10.0 11.0 } {
puts "$x: [::math::interpolation::interp-lagrange $xyvalues $x]"
}
# Spatial interpolation:
puts "\nSpatial interpolation (1)"
set xyzvalues { {-1.0 0.0 -2.0 }
{ 1.0 0.0 2.0 } }
puts "Values: $xyzvalues"
foreach coord { {0.0 0.0} {0.0 1.0} {3.0 0.0} {100.0 0.0} } {
puts "$coord: [::math::interpolation::interp-spatial $xyzvalues $coord]"
}
puts "\nSpatial interpolation (2)"
set xyzvalues { {-1.0 0.0 { -2.0 1.0 } }
{ 1.0 0.0 { 2.0 -1.0 } } }
puts "Values: $xyzvalues"
foreach coord { {0.0 0.0} {0.0 1.0} {3.0 0.0} {100.0 0.0} } {
puts "$coord: [::math::interpolation::interp-spatial $xyzvalues $coord]"
}
}